5 research outputs found

    Effectiveness of Air Cleaning Systems in Crushing Zones of Dressing Mills

    Get PDF
    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433 MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433 MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%)

    Internet-based training of coronary artery patients: the Heart Cycle Trial

    Get PDF
    © 2016, Springer Japan. Low adherence to cardiac rehabilitation (CR) might be improved by remote monitoring systems that can be used to motivate and supervise patients and tailor CR safely and effectively to their needs. The main objective of this study was to evaluate the feasibility of a smartphone-guided training system (GEX) and whether it could improve exercise capacity compared to CR delivered by conventional methods for patients with coronary artery disease (CAD). A prospective, randomized, international, multi-center study comparing CR delivered by conventional means (CG) or by remote monitoring (IG) using a new training steering/feedback tool (GEx System). This consisted of a sensor monitoring breathing rate and the electrocardiogram that transmitted information on training intensity, arrhythmias and adherence to training prescriptions, wirelessly via the internet, to a medical team that provided feedback and adjusted training prescriptions. Exercise capacity was evaluated prior to and 6 months after intervention. 118 patients (58 ± 10 years, 105 men) with CAD referred for CR were randomized (IG: n = 55, CG: n = 63). However, 15 patients (27 %) in the IG and 18 (29 %) in the CG withdrew participation and technical problems prevented a further 21 patients (38 %) in the IG from participating. No training-related complications occurred. For those who completed the study, peak VO 2 improved more (p = 0.005) in the IG (1.76 ± 4.1 ml/min/kg) compared to CG (−0.4 ± 2.7 ml/min/kg). A newly designed system for home-based CR appears feasible, safe and improves exercise capacity compared to national CR. Technical problems reflected the complexity of applying remote monitoring solutions at an international level
    corecore